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ABSTRACT.

In this paper we shall be concerned with the question of reachability

when allowing distribution inputs. We show that a certain class of systems

accept distribution inputs, but, in general, they cannot be exactly

reachable. We shall also consider the problem of the uniqueness of

canonical realizations in relation to exact reachability, and show that

Matsuo's result on uniqueness ([5]) does not apply to the example given

in Baras, Brockett, and Fuhrmann [1].



1. INTRODUCTION.

There have been a number of interesting investigations on continuous-

time constant (infinite-dimensional) linear systems. For example,

Kalman and Hautus [3) proposed a framework for treating such systems

with the following setup: S2 (the input space) E (the space

of distributions with compact support contained in (- 0 0]), r (the

output space) := E[0,- ) (the space of Co-functions on [0, -)). The

(zero-initial state) input/output map (external behavior of the system)

is then represented by convolution of an input w and a fixed C C -function

(impulse response function, or weighting pattern) A. Using this frame-

work, they successfully derived a differential equation description of -

an internal model associated with such external behavior. For this

internal model they took the state space to be the quotient space

E('_,o]/ker f, where f denotes the input/output map. Note that

their realization (internal model) is always canonical in the classical

sense (i.e., (exactly) reachable and observable). But the discussion

on the character of the state space E _0 ,]/ker f was left somewhat open.

Later Matsuo (5] showed that every canonical realization in this

framework is isomorphic to the Kalman and Hautus realization E' /ker f

if we demand that the state space be barreled.

Somewhat independently from this line, there have been a great

deal of approaches to constant linear systems described by functional

differential equations in a Banach space X:

d- = Fx + Gu, x e X, u e U, (1.1)
wt

where U is also a Banach space.



In this context several authors (for example, Baras, Brockett, and

Fuhrmann [1]; Fuhrmann [2]; Triggiani [9, 10]) noted that under some

mild assumptions the system (1.1) cannot be exactly reachable with

Ll- (or L0-) inputs with bounded support.

It seems that there is no detailed account on the precise relation-

ship between these two types of approaches at present. For example,

realizations given by Kalman and Hautus [3) are always exactly reachable

(but with distribution inputs) by construction. So this leads to the

following interesting question: Can the system (1.1) be made exactly

reachable by enlarging the input snace to the space of distributions

with compact support?

We shall start by showing that a certain subclass of systems of

type (1.1) indeed "accepts" E'-inputs, i.e., there exists a continuous

linear map g: EI -+ X which extends the usual reachability map.

One of the objectives of this paper is then to show (first, abstractly

for general systems, then concretely for an example) that they still

cannot be exactly reachable. This, however, leads to yet another

interesting question. Suppose we restrict our attention to the reachable

set of (1.1). Then we obtain an exactly reachable system with the

topology induced from the whole space X. Now according to Matsuo [5],

if it is further observable, it must be topologically isomorphic to

the Kalman and Hautus realization E[ /ker f, if thus constructed

state space is barreled. On the other hand, nonuniqueness of such

realizations is clearly shown by an example given by Baras, Brockett,

and Fuhrmann [1]. In the last section we show that the reachable set

of such a system, with the induced topology from the whole space X, is

not barreled.
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2. MATHEMATICAL PRELIMINARIES.

Throughout the discussion k denotes a fixed field, either R or C,

with the usual topology. Every space is a locally convex Hausdorff space

over k. Here we list some results on locally convex spaces and distri-

butions that are needed later. We shall however omit proofs since they

are available in the following standard references: KSthe [4]; Schaefer [6];

L. Schwartz [7]; Treves [8].

Let E(_, 0 ] denote the set of all k-valued C -functions on (- , 0].

The space E(_(*O] is a Fr~chet space with its topology generated by the

following countable family of seminorms:

d"-
p () :=sup {(-) (t)I; - a - t < 0, 0 J m), (2.1) _
Pma dt~

where m and a are positive integers.

DEFINITION 2.2. A subset B of E (_0 O]is bounded iff for every

m > 0, a > 0 there exists C > 0 such thatm,ax

Pm,a(*) 5 Cm a  for all c B. (2.3)

Let E be the dual space of E V i.e., the set of all

continuous linear forms on E( O]. It is well known that Ei -- ,0]

consists of distributions with compact support contained in (- , 0].

Let <0, w> denote the value of w c E(_.,0] evaluated at c E(_, 0].

The dual space E is equipped with the strong dual topoloky defined

by the seminorms

*
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p =sup I(W u ,>1, w c E_ (2.4)

where B runs over all bounded subsets of E

We shall make use of the following lemmas later.

LEMMA 2.5. Let w e E_ and B a bounded subset of E( . Then

there exists a constant C > 0 such that

1<, w>1 - C for all 0 e B. (2.6)

LEMMA 2.7. Let X be a normed linear space with the norm I1 II

and g: E_ X a linear map. Then g is continuous iff there

exists a bounded set B in E( and a constant C > 0 such that

II g(w) II : CpB(w) for all w e E 0] (2.8)

The following definition will be needed in Section 5.

DEFINITION 2.9. Let X be a locally convex Hausdorff space. A subset

T of X is a barrel iff it satisfies the following conditions:

(a) T is convex;

(b) T is balanced in the sense that ax c T for all jal < 1

and x £ T;

(c) T is absorbing, i.e., for every x C X there exists a

scalar a 0 such that ax c T;

(d) T is closed.

The space X is barreled iff every barrel is a neighborhood of 0.

Remark. For a locally convex space one can choose a neighborhood

base consisting of barrels. But the converse of this statement is, in

general, false.
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3. EXTENSION OF INPUTS.

Consider a constant linear system E defined by the following

functional-differential equation in a reflexive Banach space X:

dx = Fx + Gu, (3.1)dt_(31

where F is a continuous linear operator in X, G a fixed element of X,

and u (input) a scalar-valued function. Suppose that the initial state

of the system is zero at t = - and an input u of bounded support

is applied to the system until t = 0. Then the resulting state at time

0 is given by

x(o) = f exp(- Ft)Gu(t)dt. (3.2)

Note that for every x* C X' (= the dual space of X) the following

equalities hold:

0

<x(O), x*> = f <exp(- Ft)Gu(t), x#ydt (3.3)
-00

= I <exp(- Ft)G, x*>u(t)dt
-@@

at least for sufficiently smooth u. Note also that the right-hand side

of (3.3) has the form that u "acts" on the function <exp(- Ft)G, x*>.

This observation suggests the following definition:

< g E(u), x*> := <<exp(- Ft)G, x*>, u>, (3.4)

where g Z(u) denotes the "state" resulting at time 0 under the action

of an input ucE Of course, in order that (3.4) makes sense,

<exp(- Ft)G, x> must be C. Indeed, we have
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LEMMA 3.5. For every x* c X', <exp(- Ft)G, x*> is a C -function

on C- , o].

Proof. Immediate from the assumption that F is continuous. 0

Clearly (3.4) gives a linear form on X'. But it is still not

guaranteed that g (u) belongs to X. In order to show this, we shall

prove that g (u) belongs to X", which is equal to X by our

hypothesis that X is reflexive. (This is the only place where this

assumption comes into play. Further, one can indeed remove this

hypothesis by using the Mackey-Arens theorem, but the proof would become

a little more involved.) Let Bi denote the unit ball in X1. We

start with the following

LEMMA 3.6. Let K := {<exp(- Ft)G, x*>; x* e B11. Then K is a

bounded set in E(_0].

Proof. For every m, a > 0, we have the following estimate:

sup I(-)J<exp(- Ft)G, x*>l

-a5tQo

= sup I(- F)Jexp(- Ft)G, x*>f

-ctjtSO

sup {lF 11 exp(- llFltt)lGllllx*lI}

-a~t:90

S exp(II F lIct)Omll G II 11 x* 11 <  1),

where 8 max (II F 11, 11. Thus K is bounded by Definition (2.2). 0 -
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PROPOSITION 3.7. For every u c E' g u) belongs to X".

Proof. Let us calculate g "( u ) IX,,:

II gE(u) I1X,, = sup kg (u), x*>l
x*cBi

= sup j<<exp(- Ft)G, x*>, u>1
x*cBi

= sup K0, u> < +
OcK

because of Lemma (2.5) (note K is bounded). Hence gE(u) C X". [

THEOREM 3.8. The correspondence gZ: E - X: u g (u) is continuous.

Proof. Let VK,, be a neighborhood of 0 in E_ given by

VK,4 := {u E (-,.,0; sup I<4, u>1 < E}.
OCK

Let u belong to VK, Then we have

II g ( u ) 1ix = 11 g (u) iX,, (X is reflexive)

= sup <g (u), x*>i (B, = the unit ball of X')
x*B

= sup <<exp(- Ft)G, x*>, u>i
x*cB,

= sup IR0, u> : C. 0

Remark. It is easy to see that

g(u) = f exp(- Ft)Gu(t)dt

E

for sufficiently smooth u. Hence thus defined g is indeed a continuous

extension of the usual reachability map (see (3.2)).
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4. LACK OF EXACT REACHABILITY.

We have seen that the input space can be extended to E' for

systems of type (3.1). We pose the question: Can the reachable set

(= g'(E(_-, 0])) be the whole space X? If it were, we would have

that the mapping g is an open mapping by Matsuo's uniqueness theorem

(see also Pt.k's open mapping theorem - Schaefer [6, IV.8.3, Corollary 1]).

So X must be isomorphic to the quotient space E'/ker g (In the

sequel we denote E , and E simply by P, E, respectively.)

Thus our question may be rephrased as "Can E'/ker g be a Banach space?"

The following Proposition (4.1) claims this is not the case unless

E'/ker g is finite-dimensional.

PROPOSITION 4.1. The space E'/ker g" is a Banach space if and only if

it is of finite-dimension.

Proof. We note from Schaefer [6,IV.9.7, Example 3] that E'

is a nuclear space, and hence E'/ker g itself is a nuclear space

(Schaefer [6, 111.7.4]). But a nuclear space can be a Banach space iff

it is of finite-dimension (Schaefer [6, 111.7.1]). 0

Hence, in general, the systems of type (3.1) cannot be exactly reachable.

Let us further note the following additional result on the structure

of E'/ker gE.

PROPOSITION 4.2. The space E'/ker g is complete but not metrizable

unless it is finite-dimensional.

Proof. First we note that E' is B-complete (Schaefer [6, IV.8,

Example 2]) so that its quotient E'/ker g is also B-complete (Schaefer

[6, IV.8.3, Corollary 31). Since every B-complete space is complete

(Schaefer [6, IV.8.1]), E'/ker gr is complete.
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Secondly, since E'/ker gE is a complete locally convex space,

it is metrizable if and only if it is a Frechet space. On the other

hand, E'/ker g is a DF-space (for a definition, see Kothe [4, 29.3])

as a separated quotient of a DF-space E' (Kothe [4, 29.5]). But a

DF-space is a Frechet space if and only if it is a Banach space; see,

for example, K~the [h, 29.1]. By Proposition (4.1) this is impossible

unless it is finite-dimensional. 0

R . .... . ...... ........



5. EXAMPLE.

In this section we confine ourselves to the example given in

Baras, Brockett, and Fuhrmann [1). The example is the system Z defined by

d-Xn = Xnx +gu' n , 2, 3,...,
n n gnu ""

Go (5.1)
y(t) = I hnX

n=l

where the state space X £2, and Ign , {h) E 2. They showed that if

Xn X m for n # m and gn # 0, h # 0 for all n, this type of system

is weakly canonical (i.e., the reachable set is dense in £2, and observable),

but there can be still many nonisomorphic systems of type (5.1) that have

the same external behavior.

Let us assume Ix n X. Note that this is equivalent to assuming

that the operator: (x1 . x 2 ,..., X,...) . (Ox 1 , XX 2 X2 ,... Xn xn... ) is

bounded. We already know that Z accepts E'-inputs by Theorem (3.8),

for E is a special case of (3.1) by putting X := £2,

F := diag (Xi, X2,'.', Xn,''), G := {g n. Our objective in this

section is to explicitly see that

(i) XR := g(E -,O]) is not equal to the whole space Z2, i.e.,

cannot be exactly reachable even with E'-inputs;

(ii) the reachable subspace XR, with the topology induced

from k2, is not barreled.

The second statement explains why Matsuo's result on the uniqueness

of canonical realizations does not apply to this example.
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Given an input u £ E', we can express g (u) (see (3.4)) as

g (U)in = <exp(- Xn t)gn, u>, n = 1, 2,...,

where g (u)I denotes the n-th ccordinate of g r.u). Let

M := {exp(- X nt); n = 1, 2,...}; it is easy to see that M is a

bounded subset of E. Then we have

PROPOSITION 5.2. The reachible set N is not equal to £2, i.e.,

the system E is not exactly reachable even with E'-inuts.

Proof. First, we have the following estimate:

g Z(u) n = <exp(- Xnt)gn, u>1 (5.3)

I<exp(- Xnt)' u>llgn-

= sup I< ' u>jign,

= PM(u)lgnl for all n.

Clearly pM(u) is finite by Lemmas (2.5) and (2.6). On the other hand,

the following Lemma (5.4) shows that there always exists an £2-sequence

{yn) such that no positive constant C satisfies the inequality

lYni : Cign1. This proves the assertion. 0

LEMMA 5.4. For every Z2-seugence {gnI such that gn # 0 for all n,

there exists {ynl E E2 such that yn/gnl is unbounded.

Proof. Assume the contrary. For each positive integer m,

define Km by

K := {{x I £2; Z Ixn mgn for all n).
m n n1! ~n1
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It is easy to verify that Km  is a closed symmetric convex set for each m.

W
By the assumption we have Z2 = mUl K . Then by the Baire category theorem,

at least one of the K 's, in fact K1  itself, contains an open ball V.

Since K i is symmetric and convex, we may assume V is of the type:

V = {x C £2; II xf1 :- c }. Choose a number k such that 21gki < 'E.

LetL2(k) an (k) =

Let x~k ) be the element of £2 given by xk = 2gk  and x1

if J 0 k. Then II xk 21gk < c, so x(k) x V. But k =-

21gk > IgIj. Thus (k) K1, contrary to the assertion V c K1 . Q

Now given {x n  XR, we define llfx n ) 11. by

11 {xn} il := sup {Ixn/gn1; n = 1, 2,...1.

In view of (5.3), Ij{x n } 11' is well defined for every {x n ,

but not necessarily so for {xn  Xn .

PROPOSITION 5.5. Let T := {x C XR; II x II 5 1}. Then T is a barrel

Of XR*

Proof. It is easy to see that T is convex, balanced and

absorbing (cf. Definition (2.9)). We must show that T is closed.

Let xp be a sequence in T converging to x0 C XR . Since xp -, x

in £2, each component xp converges to x 0  for every J. Since

IjxI : 1 for all J, IxJI r 1 follows. Thus x0 belongs to T. 0

The next Proposition (5.6) claims that the above defined T is not

a neighborhood of X., thereby establishing the fact that Y is

not barreled.
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PROPOSITION 5.6. The barrel T defined above is not a neighborhood

of 0 in XR.

Proof. Assume the contrary. Define a linear map T: XR + .9 by

T({Xn}) := {Xn /gn}).

According to (5.3) this is a well-defined map. By the definition of T,

II T({x}) I 1 if and only if {x n } e T. In other words T = f1(B1),

where B denotes the unit ball of Z . This means that T is

continuous by our assumption. Since X is known to be dense in X2

(cf. Baras, Brockett, and Fuhrmann [1]), there exists a unique continouos

extension 2: + 1' such that V({x}) = {xn/g n} is well defined on

the whole space 12. But this contradicts the conclusion of Lemma (5.4).

Hence T cannot be a neighborhood of XR . 0
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6. CONCLUDING REMARKS.

It has been somewhat informally conjectured that the nonuniqueness

of canonical realizations occurs in the Baras, Brockett, Fuhrmann-example

in spite of Matsuo's result on the uniqueness because the state space

of their example is too "small" to accept E'-inputs. We have seen,

however, that the state space of the Baras, Brockett, Fuhrmann-example

is indeed large enough to accept E'-inputs, but the reason for non-

uniqueness is purely topological, i.e., the reachable set of the Baras,

Brockett, Fuhrmann-example is not barreled.
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